УДК: 615.28

DOI: 10.24412/2075-4094-2021-3-3-4

ПОЛУЧЕНИЕ И ХАРАКТЕРИСТИКА МАГНИТНЫХ НАНОЧАСТИЦ С ОБОЛОЧКОЙ ИЗ ПОЛИЛАКТИДА, ПОЛИСАХАРИДА И АЛЬБУМИНА

Я.Г. ТОРОПОВА^{*}, Ю.П. БЕЛЬСКИЙ^{*}, Н.В. БЕЛЬСКАЯ^{*}, Д.В. КОРОЛЕВ^{*,**}, И.А. ЗЕЛИНСКАЯ^{*}, Н.М. ЕГОРОВА^{*}, Д.В. МУХАМЕТДИНОВА^{*}, С.Г. ЖУРАВСКИЙ^{*}

* Институт экспериментальной медицины Федерального государственного бюджетного учреждения "Национальный медицинский исследовательский центр имени В.А. Алмазова" Министерства здравоохранения Российской Федерации, ул. Аккуратова, д. 2, г. Санкт-Петербург, 197341, Россия ** Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, ул. Льва Толстого, д. 6-8, г. Санкт-Петербург, 197022, Россия

Аннотация. Цель исследования. Разработка способа получения магнитных наночастиц на основе оксида железа, определение размеров, физико-химических свойств, оценка токсикологических характеристик магнитных наночастиц, покрытых разными материалами (полилактид, полисахарид, альбумин). Материалы и методы исследования. Магнитные наночастицы получали соосаждением из растворов солей железа (II) и железа (III). Поверхность магнитных наночастиц модифицировали оболочками на основе полиэфира молочной кислоты, поликонденсированной глюкозы (полисахаридов) и альбумина. Результаты и их обсуждение. Результаты изучения магнитных наночастиц показали, что полученные частицы имели размеры 10-20 нм с изотропной формой, близкой к кубической, удельный магнитный момент насыщения не менее $36,9 \, \text{A} \cdot \text{m}^2/\text{kr}$, коэрцитивную силу не более $30 \, \text{Э}$. Материал покрытия магнитных наночастиц влиял на их токсические свойства: LD50 при внутривенном введении крысам самцам составила для частиц с оболочкой из полилактида 4,6 мл/кг, для частиц с оболочкой из полисахарида 7,9 мл/кг и для частиц с оболочкой из альбумина более $10 \, \text{мл/кг}$. Соболочкой из альбумина проявили слабую гепатотоксичность, с оболочкой из альбумина – пульмонотоксичность.

Ключевые слова: адресная доставка, магнитные наночастицы, токсичность

PREPARATION AND CHARACTERIZATION OF MAGNETIC NANOPARTICLES COATED WITH POLYLACTIDE, POLYSACCHARIDE AND ALBUMIN

YA.G. TOROPOVA^{*}, Y.P. BELSKIY^{*}, N.V. BELSKAIA^{*}, D.V. KOROLEV^{*,**}, I.A. ZELINSKAIA^{*}, N.M. EGOROVA^{*}, D.V. MUKHAMETDINOVA^{*}, S.G. ZHURAVSKII^{*}

^{*} Almazov National Medical Research Centre of the Ministry of health of the Russian Federation, Akuratov Str. 2, St. Petersburg, 19734, Russia ^{**} First Pavlov State Medical University of St. Petersburg, L. Tolstoy Str., 6-8, St. Petersburg, 197022, Russia

Abstract. *The research purpose* was to develop a method for producing iron oxide magnetic nanoparticles, determine the size, physical and chemical properties, and evaluate the toxicological characteristics of magnetic nanoparticles coated with different materials (polylactide, polysaccharide, albumin). *Materials and methods.* Magnetic nanoparticles were obtained by co-precipitation from solutions of iron (II) and iron (III) salts. Then magnetic nanoparticles were coating with polylactide, polysaccharides or albumin. *Results and its discussion.* The results of the study showed that magnetic nanoparticles had dimensions of 10-20 nm with an isotropic shape close to the cubic one, a specific magnetic moment of saturation of at least 36.9 A*m²/kg, and a coercive force of no more than 30 E. The material of the coating affected the toxic properties of magnetic nanoparticles: LD50 was 4.6 ml/kg for magnetic nanoparticles with a polylactide layer, 7.9 ml/kg for magnetic nanoparticles with a polylactide or polylactide layer demonstrated a weak hepatotoxicity, with an albumin layer had a weak pulmonotoxicity.

Keywords: targeted delivery, magnetic nanoparticles, toxicity

Введение. Исследование *магнитных наночастиц* (МНЧ) в онкологии сосредоточено в трех направлениях: во-первых, получение на основе МНЧ диагностических средств, во-вторых, разработка на основе МНЧ новых методов противоопухолевой терапии, основанной на воздействии на опухолевый узел физических факторов (температура, радиоактивное излучение, магнитное поле, ультразвук) и, втретьих, использование МНЧ в качестве носителей для адресной доставки противоопухолевых химиопрепаратов [4, 6, 7, 9-11]. Для указанных целей суспензии или коллоидные растворы МНЧ вводятся ин-

ВЕСТНИК НОВЫХ МЕДИЦИНСКИХ ТЕХНОЛОГИЙ. Электронное издание – 2021 – N 3 JOURNAL OF NEW MEDICAL TECHNOLOGIES, eEdition – 2021 – N 3

травазально, в связи с чем важно, чтобы такие формуляции, с одной стороны, были устойчивы и обладали неким достаточным сроком годности, а с другой стороны, введенные МНЧ находились в кровеносном русле достаточное время и были способны накапливаться в опухолевой ткани. Время циркуляции и способность к накоплению в опухоли напрямую зависят от сочетания таких свойств МНЧ, как размер, форма, поверхностный заряд, гидрофильность, магнитные характеристики. Показано, что МНЧ с большим размером частиц (более 150 нм) оседают в печени, селезенке и легких, с малым (менее 8 нм) – слишком быстро (секунды, минуты) выводятся из кровотока; МНЧ с сильно позитивно заряженной поверхностью могут вызывать агрегацию тромбоцитов и гемолиз, а МНЧ с высокозаряженной поверхностью (около 25 мВ, позитивно или негативно заряженные) при хранении взаимодействуют между собой, образуя конгломераты [6]. Одним из способов достижения оптимального поверхностного заряда, гидрофильности и способности МНЧ накапливаться в опухоли является покрытие частиц такими материалами, как полиэтиленгликоль, полисахариды (например, хитозан, декстран), жирные кислоты, альбумин. Поскольку исследования наночастиц, в том числе и с магнитными свойствами, имеет почти 30-летнюю историю, то уже сложились теоретические представления о способах модификации МНЧ для получения частиц с заданными свойствами. Достигнут определенный успех в получении и использовании МНЧ для диагностики и лечения онкологических заболеваний [12-14], однако изучение способов получения МНЧ с заданными физико-химическими и биологическими свойствами все еще остается актуальным.

Цель исследования – разработка способа получения МНЧ на основе оксида железа, определение размеров, физико-химических свойств, оценка некоторых токсикологических характеристик МНЧ, по-крытых разными материалами (полилактид, полисахарид, альбумин).

Материалы и методы исследования. Магнитные наночастицы получали соосаждением из растворов солей железа (II) и железа (III), как описано ранее [2]. Для синтеза был использован реактор идеального смешения периодического действия емкостью резервуара 2000 мл (*YHCHEM*, Китай), который был модифицирован для плавной подачи аммиака и барбатирования азотом.Для модификации поверхности МНЧ были изготовлены оболочки на основе полиэфира молочной кислоты (*PLA-D,L*), на основе поликонденсированной глюкозы (полисахаридов) и на основе альбумина. Нанесение оболочки *PLA* производили из раствора в хлороформе промывкой изопропиломов в спирте при ультразвуковом диспергировании. Процесс нанесения оболочки из полисахаридов гидротермальным методом описан в работе [1] и заключается в обработке суспензии МНЧ в насыщенном водном растворе глюкозы при повышенном давлении до 50 МПа в течение 24 часов. Нанесение оболочки альбумина производили, как было описано в [15] путем хемосорбции на аминированную поверхность.

Форма и размеры магнитных наночастиц до и после нанесения всех типов оболочек были получены с помощью просвечивающего электронного микроскопа Zeiss Libra 200FE с автоэмиссионным катодом, энергетическим Ω -фильтром и системой освещения по Келеру. Подтверждение формирования оболочки из полилактида и альбумина было произведено методом термогравиметрического анализа в диапазоне температур 25-750°C с использованием прибора для термических испытаний материалов SETSYS Evolution 1750 CS (Setaram, Франция). Наличие оболочки из полисахарида подтверждалось при помощи ИК-Фурье спектрометра NICOLET 6700 (Thermo Scientific, США). Содержание кристаллических фаз в составе МНЧ оценивалось методом рентгеновской дифракции с использованием настольного порошкового дифрактометра D2 Phaser (Bruker, ФРГ), оснащенного кобальтовым анодом.

В исследовании использованы крысы самцы стока *SD* (*Sprague Dawley*), полученные из НПП «Питомник лабораторных животных» ФИБХ РАН (г. Пущино Московской области, РФ). Условия содержания и использование животных в экспериментах соответствовали изложенным в протоколе-заявке на использование лабораторных животных № 18-1ПЗ#*V*2 и контролировались Комиссией по контролю содержания и использования лабораторных животных ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава РФ.

Животные содержались группами в индивидуально вентилируемых клетках (*«Tecniplast»*, Италия) с подстилом Рехофикс МК-2000 (*«Rettenmaier»*, Германия), имели неограниченный доступ к корму («ПроКорм для лабораторных крыс и мышей», ГОСТ Р 50258-92, ЗАО «БиоПро», г. Новосибирск, РФ) и воде (вода готовилась при помощи системы обратного осмоса *RiOs* 30 компании *Merck Millipore*). Параметры микроклимата внутри клетки с животными поддерживались автоматически блоками подготовки воздуха *Smart Flow* (*«Tecniplast»*, Италия): температура воздуха 20-26°С, относительная влажность воздуха 30-70%. В комнате содержания освещенность 320-360 Люкс, световой режим 12:12, уровень шума до 85 Дб.

Для оценки токсических свойств МНЧ животным (по 5 в группе) вводили в латеральную вену хвоста однократно в 1 прием МНЧ с разным покрытием со скоростью около 1 мл/мин при помощи одноразовых катетеров (Вазофикс Церто, 24*G*, 50 мм, «*Braun*», Германия). Объем введения (доза) составлял для МНЧ с покрытием из полисахарида и альбумина 1.25 мл/кг, 2,5 мл/кг, 5 мл/кг и 10 мл/кг. Объем введения для МНЧ с покрытием из полилактида составлял 1.25 мл/кг, 2,5 мл/кг и 5 мл/кг. Контрольной группе вводили 10 мл физиологического раствора - препарат «Натрия хлорид», раствор для инфузий производства ООО «Гематек» (г. Тверь, Россия). За животными наблюдали 9 дней после введения, оценивали

ВЕСТНИК НОВЫХ МЕДИЦИНСКИХ ТЕХНОЛОГИЙ. Электронное издание – 2021 – N 3 JOURNAL OF NEW MEDICAL TECHNOLOGIES, eEdition – 2021 – N 3

смертность, клинические признаки нарушения здоровья, массу тела (на 3-и и 6-е сутки), состояние системы крови (на 9-е сутки). В конце периода наблюдения животных подвергали эвтаназии передозировкой ингаляционного анестетика изофлурана с последующей декапитацией.

Гематологические исследования проводили с помощью автоматического гематологического анализатора URIT – 3000 (URIT Medical Electronic Group Co., Ltd; КНР). При вскрытии животных исследовали внешнее состояние тела, внутренние поверхности и проходы, полость черепа, грудную, брюшную и тазовую полости с находящимися в них органами и тканями, шею с органами и тканями, каркас и скелетно-мышечную систему, забирали материал для последующего гистологического исследования. Статистическая обработка проводилась с помощью программы Statistica 8.0. Вычислялись среднее арифмеmuческое (M) и стандартная ошибка среднего (m). Различия между группами считали достоверными при p<0.05.

Результаты и их обсуждение. По результатам просвечивающей электронной микроскопии исходных синтезированных МНЧ их размер составлял 10-20 нм, а форма изотропной и близкой к кубической (рис. 1). Для магнетита средний размер кристаллитов менее 20 нм в диаметре соответствует суперпарамагнитному состоянию при нормальных условиях [5].

Рис. 1. Вид синтезированных магнитных частиц без оболочки по результатам просвечивающей электронной микроскопии: А – общий вид, Б – изображение отдельных кристаллитов магнетита

Удельный магнитный момент насыщения получаемых МНЧ до нанесения оболочки составлял не менее 36,9 А·м²/кг, а коэрцитивная сила – не более 30 Э. Достаточно высокое значение коэрцитивной силы обусловлено магнитостатическим взаимодействием отдельных суперпарамагнитных частиц магнетита, что приводит к уменьшению эффективного диаметра блокирования, как показано в работе [8].

По данным рентгеновской дифракции в состав МНЧ входят кристаллические фазы магнетита, гетита и нитрата оксида-гидроксида железа. Наиболее интенсивный рефлекс ($2\Theta = 41.492^{\circ}$) соответствует кристаллической фазе магнетита, также к этой фазе приписываются рефлексы 21,369°, 35,182°, 42,83°, 50,605°, 55,5°, 63,21°, 67,47°, 74,374°, 85,15°, 88,85° и 95,6°. Относительная интенсивность рефлексов, приписываемых магнетиту, преобладала по сравнению с рефлексами других кристаллических фаз, что свидетельствует о высоком содержании кристаллического магнетита в составе получаемых МНЧ.

Потеря массы при термогравиметрическом исследовании образца с оболочкой из полилактида составила 7,2% от массы сухого образца, что говорит о соответственном массовом содержании *PLA-D,L*. Аналогичное исследование образца с оболочкой из альбумина выявило массовое содержание белка равное 15,0 массовым процентам. К сожалению, термогравиметричесий анализ образца с оболочкой из полисахарида не позволил оценить количественное содержание органической оболочки. По-видимому, это связано с ее малой толщиной. Качественное подтверждение наличия такой оболочки было доказано проведением ИК-Фурье анализа образцов, в которых были найдены характерные линии α -*D* глюкозы и ее производных (844 1/см) и β -*D* глюкозы (891 1/см).

Введение животным МНЧ с оболочками из полилактида или полисахарида наблюдалась гибель сразу после введения (в группах 5 мл/кг *МНЧ с оболочкой из полилактида* (МНЧ-*Pld*) и 10 мл/кг *МНЧ с оболочкой из полисахарида* (МНЧ-*Psd*)), в группах *МНЧ с оболочкой из альбумина* (МНЧ-*Alb*) гибели не наблюдалось. *Полулетальная доза* (*LD*₅₀) составила: у МНЧ-*Pld* – 4,6±1,1 мл/кг, у МНЧ-*Psd*–7.9±1,4 мл/кг, у МНЧ-*Alb* - более 10 мл/кг. Масса тела животных после введения МНЧ с разным покрытием на 3-и и 6-е сутки не изменялась. По окончании наблюдения на 9-й день гематологические показатели опытных и контрольной групп не различались между собой, не обнаружено также различий между опытными группами.

ВЕСТНИК НОВЫХ МЕДИЦИНСКИХ ТЕХНОЛОГИЙ. Электронное издание – 2021 – N 3 JOURNAL OF NEW MEDICAL TECHNOLOGIES, eEdition – 2021 – N 3

При вскрытии животных через 9 дней после введения МНЧ обнаружены патологические изменения в печени и легких. В группе МНЧ-*Pld*, в дозе 5 мл/кг, отмечено венозное полнокровие печени у одного животного из двух, у двух животных – патологические изменения в легких, кровоизлияния. В других органах значимых макроскопических изменений не обнаружено.

Для гистологического анализа были взяты препараты ткани печени и легких самцов крыс после введения магнитных наночастиц с разным покрытием (МНЧ-*Psd*, МНЧ-*Pld* и МНЧ-*Alb*) в дозе 5 мл/кг. Эти три группы были выбраны на основании того, что животные этих групп дожили до некропсии в количестве, достаточном для сравнения патоморфологических изменений, вызванных каждым из видов магнитных наночастиц, получив при этом максимальную дозу (объем) тестируемых веществ.

У животных после введения МНЧ-*Psd* в легких изменений патологического характера не выявлено. В печени (рис. 2) наблюдалась мозаичная картина неспецифических реактивных изменений негнойного подострого характера от дистрофических изменений до асептического некроза, грубые нарушения балочного строения печеночной дольки: отсутствие линейности, выраженный отек гепатоцитов, появление двуядерных клеток. Пространство синусоидов резко сужено за счет набухших гепатоцитов. В синусоидах отчетливое повышение клеток Купфера (пролиферация пула). Диффузно чаще в периваскулярных участках в зоне центральных вен расположены единичные очаги круглоклеточной инфильтрации с поврежденными эпителиальными клетками. Очаги по возрасту соответствуют молодым гранулемам. Участки асептических некрозов чаще встречались в субкапсулярных зонах. Признаков апоптоза гепатоцитов, присутствия клеток, депонирующих железосодержащие гранулы (гемосидерофагоподобных клеток) не обнаружено. Полнокровие сосудов представлено в разной степени – от минимальной до выраженной.

Рис. 2. Ткань печени животного после введения магнитных наночастиц с оболочкой из полисахарида. Асептический некроз гепатоцитов в субкапсулярной зоне (образец 18-2).Ув. 200. Окр.: гематоксилин-эозин

Введение МНЧ-*Pld* не вызывало грубых изменений респираторного отдела легкого. Наблюдалась умеренная степень реакции альвеолярных и/или интерстициальных макрофагов, фиксирующих гранулы коричневого цвета (по типу гемосидерофагов), единичные, диффузно располагающиеся истинные макрофагальные гранулемы в интерстиции респираторных участков паренхимы, умеренное полнокровие сосудов. В печени у животных после введения МНЧ-*Pld* наблюдались неспецифические реактивные изменения, негнойного подострого характера без признаков некроза. Нарушение балочного строения печеночной дольки умеренной степени, визуально отмечалось повышение численности клеток Купфера (пролиферация пула) в синусоидах. В синусоидах наблюдалось значительное количество крупных клеток с включением гранул коричневого цвета, сходными с гемосидерином (специфической окраски на гемосидерин не проводили), местами располагающиеся по 2-3 клетки. Обнаружены единичные очаги круглоклеточной инфильтрации (по типу молодых гранулем), чаще расположенных в периваскулярных зонах. В ряде инфильтратов встречались макрофагальные клетки, содержащие коричневые гранулярные включения в цитоплазме. Признаков асептического некроза ткани, апоптоза гепатоцитов, наличия сидерофагов не выявлено. Сосуды с неравномерным полнокровием разной степени от минимальной до выраженной.

В ткани печени животных, получавших МНЧ-*Alb*, грубых изменений не наблюдалось. Введение МНЧ-*Alb* приводило к инфильтративной реакции в ткани легкого (рис. 3). В интерстиции часто встречались различных размеров истинные гранулемы инородных тел, местами сливающиеся друг с другом,

представленные макрофагальными элементами: клетки, фиксирующие коричневые, железосодержащие гранулы (по типу гемосидерофагов), а также молодые клетки Пирогова-Ланганса. Гранулемные инфильтраты формируются вокруг просветов сосудов, эмболизированных коричневым (железосодержащим) преципитатом. Выраженное венозное полнокровие сосудов. Диффузного утолщения альвеолярных перегородок не обнаружено. Висцеральная плевра не изменена.

Рис. 3. Ткань респираторного отдела легкого животного после введения магнитных наночастиц с оболочкой из альбумина. Истинные гранулемы вокруг участков эмболизированных сосудов (образец 17-2).Ув. 100. Окр.: гематоксилин-эозин

Показано, что при внутривенном введении железосодержащие наночастицы взаимодействуют с белками свертывающей системы и циркулирующими в крови фагоцитирующими клетками. прежде всего, с макрофагами, а при попадании с током крови в органы накапливаются преимущественно в печени, селезенке и в небольшом количестве в легких [3]. Частицы, имеющие малые размеры (менее 15 нм), выводятся из организма преимущественно через почки, среднего (15-180 нм) захватываются купферовскими клетками печени и могут накапливаться в межклеточном пространстве, а более крупные частицы попадают в краевые зоны и красную пульпу селезенки, где секвестрируются селезеночными макрофагами [3]. Вероятно, гибель животных сразу после введения МНЧ или в первые минуты после введения связана с нарушением гемодинамики за счет активации свертывающей системы, что может приводить к образованию множественных тромбов. При гистологическом исследовании печени и легких выявлены признаки незначительной гепато- и пульмонотоксичности. Изучаемые магнитные наночастицы можно расположить следующим образом: по степени гепатотоксичности (выраженности реактивных изменений в печени) МНЧ-*Psd*>МНЧ-*Pld*>>МНЧ-*Alb*, по степени пульмотоксичности (выраженности гранулемообразования) МНЧ-Alb>>МНЧ-Pld>МНЧ-Psd. Обращает внимание, что образцы, проявляющие наибольшую гепатотоксичность (МНЧ-Psd), вызывают наименьшие изменения в ткани легкого. В свою очередь образцы, демонстрирующие наибольшие изменения в легочной ткани (МНЧ-Alb), вызывают наименьшие реактивные изменения в ткани печени. Эта реципрокность изменений должна быть принята во внимание при дальнейших работах по совершенствованию таргетности дисперсных транспортных систем в отношении печени и легкого как органов-мишеней.

Учитывая исходно одинаковые размеры магнитных наночастиц, полученные различия в органотоксичности можно связывать с характером покрытия, которое определило преимущественный характер органного биораспределения. Покрытие альбумином приводило к максимальной органотропности частиц к паренхиме легкого, как органа, капиллярное русло которого первым контактировало с внутривенно вводимой суспензией. Преимущественное биораспределение в капиллярной системе легкого привело к сокращению доступа МНЧ-*Alb* к другим органам, находящимся в большом круге кровообращения. Напротив, покрытие из полисахарида обеспечивает относительно свободное прохождение суспензии через капиллярное русло легких и соответственно равномерное биораспределение в органах большого круга кровообращения. В этом случае неспецифические реактивные изменения в ткани печени отвечают биораспределению в печени, как в органе выделительной системы, и развиваются по механизму острого токсического гепатита.

Выводы:

1. Использованный метод получения магнитных наночастиц позволил получить частицы размером с высоким содержанием магнетита размером 10-20 нм, кубической формы с удельным магнитным моментом насыщения не менее 36,9 А·м²/кг и коэрцитивной силой не более 30 Э.

2. Материал покрытия магнитных наночастиц влияет на их токсические свойства, *LD*₅₀ при внутривенном введении крысам самцам составила: для частиц с оболочкой из полилактида 4,6 мл/кг, для частиц с оболочкой из полисахарида 7,9 мл/кг и для частиц с оболочкой из альбумина более 10 мл/кг.

3. Магнитные наночастицы с оболочкой из полисахарида и полилактидаобладают слабой гепатотоксичностью, магнитные наночастицы с оболочкой из альбумина – пульмонотоксичностью.

Литература

1. Гареев К.Г., Пугач В.С., Евреинова Н.В. Синтез наноматериалов с флуоресцентной меткой для медицинского назначения // Биотехносфера. 2017. № 3. С. 76–81.

2. Королев Д.В., Шульмейстер Г.А., Романова Т.Н., Постнов В.Н. Исследование эффективности различных органических растворителей при синтезе аминоспейсера на магнитных наночастицах // Биотехносфера. 2018. № 2. С. 40–44.

3. Arami H., Khandhar A., Liggitt D., Krishnan K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles // Chem Soc Rev. 2015. V. 44. P. 8576–8607.

4. Chang D., Lim M., Goos J.A.C.M. Biologically targeted magnetic hyperthermia: potential and limitations // Front Pharmacol. 2018. V. 9. P. 831. DOI: 10.3389/fphar.2018.00831.

5. Coey J.M.D. Magnetism and Magnetic Materials. Cambridge: Cambridge University Press, 2010. 617 p.

6. Durymanov M.O., Rosenkranz A.A., Sobolev A.S. Current approaches for improving intratumoralaccumulation and distribution of nanomedicines // Theranostics. 2015. V. 5. P. 1007–1020. DOI: 10.7150/thno.11742.

7. Estelrich J., Busquets M.A. Iron oxide nanoparticles in photothermal therapy // Molecules. 2018. V. 23. P. E1567. DOI: 10.3390/molecules23071567.

8. Gareev K.G., Kharitonskii P.V., Ryzhov V.A., Ionin S.A. Microstructure and magnetic state of Fe3O4-SiO2 colloidal particles // J Magnetics. 2015. V.20. P. 221–228. DOI: 10.4283/JMAG.2015.20.3.221.

9. Lyer S., Singh R., Tietze R., Alexiou C. Magnetic nanoparticles for magnetic drug targeting // Biomed Tech (Berl). 2015. V. 60. P. 465–475. DOI: 10.1515/bmt-2015-0049.

10. Myung J.H., Tam K.A., Park S.J. Recent advances in nanotechnology-based detection and separation of circulatingtumorcells // Wiley Interdiscip Rev NanomedNanobiotechnol. 2016. V.8. P. 223–239. DOI: 10.1002/wnan.1360.

11. Pinel S., Thomas N., Boura C., Barberi-Heyob M. Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment // Adv Drug Deliv Rev. 2019. V. 138. P. 344–357. DOI: 10.1016/ j.addr.2018.10.013.

12. Spirou S.V., Basini M., Lascialfari A. Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice // Nanomaterials (Basel). 2018. V. 8. P. E401. DOI: 10.3390/nano8060401.

13. Tietze R., Zaloga J., Unterweger H. Magnetic nanoparticle-based drug delivery for cancer therapy // Biochem Biophys Res Commun. 2015. V. 468. P. 463–470. DOI: 10.1016/j.bbrc.2015.08.022.

14. Ungureanu B.S., Teodorescu C.M., Săftoiu A. Magnetic nanoparticles for hepatocellular carcinoma diagnosis and therapy // J Gastrointestin Liver Dis. 2016. V. 25. P. 375–383. DOI: 10.15403/jgld.2014.1121. 253.nan.

15. Zorin V.N., Naumisheva E.B., Postnov V.N. Magnetic nanoparticles for medical application with a coating deposited with various methods // J Physics Conference Series. 2018. V. 1124. P. 031009. DOI: 10.1088/1742-6596/1124/3/031009.

References

1. Gareev KG, Pugach VS, Evreinova NV. Sintez nanomaterialov s fluorescentnoj metkoj dlja medicinskogo naznachenija [Synthesis of nanomaterials with a fluorescent label for medical use]. Biotehnosfera. 2017;3:76-81. Russian.

2. Korolev DV, Shul'mejster GA, Romanova TN, Postnov VN. Issledovanie jeffektivnosti razlichnyh organicheskih rastvoritelej pri sinteze aminospejsera na magnitnyh nanochasticah [Investigation of the effective-

ness of various organic solvents in the synthesis of an amino spacer on magnetic nanoparticles]. Biotehnosfera. 2018;2:40-4. Russian.

3. Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015;44:8576-607.

4. Chang D, Lim M, Goos JACM. Biologically targeted magnetic hyperthermia: potential and limitations. Front Pharmacol. 2018;9:831. DOI: 10.3389/fphar.2018.00831.

5. Coey JMD. Magnetism and Magnetic Materials. Cambridge: Cambridge University Press; 2010.

6. Durymanov MO, Rosenkranz AA, Sobolev AS. Current approaches for improving intratumoralaccumulation and distribution of nanomedicines. Theranostics. 2015;5:1007-20. DOI: 10.7150/thno.11742.

7. Estelrich J, Busquets MA. Iron oxide nanoparticles in photothermal therapy. Molecules. 2018;23:E1567. DOI: 10.3390/molecules23071567.

8. Gareev KG, Kharitonskii PV, Ryzhov VA, Ionin SA. Microstructure and magnetic state of Fe3O4-SiO2 colloidal particles. J Magnetics. 2015;20:221-8. DOI: 10.4283/JMAG.2015.20.3.221.

9. Lyer S, Singh R, Tietze R, Alexiou C. Magnetic nanoparticles for magnetic drug targeting. Bio-med Tech (Berl). 2015;60:465-75. DOI: 10.1515/bmt-2015-0049.

10. Myung JH, Tam KA, Park SJ. Recent advances in nanotechnology-based detection and separation of circulatingtumorcells. Wiley Interdiscip Rev NanomedNanobiotechnol. 2016;8:223-39. DOI: 10.1002/wnan.1360.

11. Pinel S, Thomas N, Boura C, Barberi-Heyob M. Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Adv Drug Deliv Rev. 2019;138:344-57. DOI: 10.1016/j.addr.2018.10.013.

12. Spirou SV, Basini M, Lascialfari A. Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice. Nanomaterials (Basel). 2018;8:E401. DOI: 10.3390/nano8060401.

13. Tietze R, Zaloga J, Unterweger H. Magnetic nanoparticle-based drug delivery for cancer therapy. BiochemBiophys Res Commun. 2015;468:463-70. DOI: 10.1016/j.bbrc.2015.08.022.

14. Ungureanu BS, Teodorescu CM, Săftoiu A. Magnetic nanoparticles for hepatocellular carcinoma diagnosis and therapy. J Gastrointestin Liver Dis. 2016;25:375-83. DOI: 10.15403/jgld.2014.1121.253.nan.

15. Zorin VN, Naumisheva EB, Postnov VN. Magnetic nanoparticles for medical application with a coating deposited with various methods. J Physics Conference Series. 2018;1124:031009. DOI: 10.1088/1742-6596/1124/3/031009.

Библиографическая ссылка:

Bibliographic reference:

Торопова Я.Г., Бельский Ю.П., Бельская Н.В., Королев Д.В., Зелинская И.А., Егорова Н.М., Мухаметдинова Д.В., Журавский С.Г. Получение и характеристика магнитных наночастиц с оболочкой из полилактида, полисахарида и альбумина // Вестник новых медицинских технологий. Электронное издание. 2021. №3. Публикация 3-4. URL: http://www.medtsu.tula.ru/VNMT/Bulletin/E2021-3/3-4pdf (дата обращения: 04.06.2021). DOI: 10.24412/2075-4094-2021-3-3-4*

Toropova YAG, Belskiy YP, Belskaia NV, Korolev DV, Zelinskaia IA, Egorova NM, Mukhametdinova DV, Zhuravskii SG. Poluchenie i harakteristika magnitnyh nanochastic s obolochkoj iz polilaktida, polisaharida i al'bumina [Preparation and characterization of magnetic nanoparticles coated with polylactide, polysaccharide and albumin]. Journal of New Medical Technologies, e-edition. 2021 [cited 2021 Jun 04];3 [about 7 p.]. Russian. Available from: http://www.medtsu.tula.ru/VNMT/Bulletin/E2021-3/3-4.pdf. DOI: 10.24412/2075-4094-2021-3-3-4

^{*} номера страниц смотреть после выхода полной версии журнала: URL: http://medtsu.tula.ru/VNMT/Bulletin/E2021-3/e2021-3.pdf