МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «**ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ**» МЕДИЦИНСКИЙ ИНСТИТУТ

В.А. Хромушин, К.Ю. Китанина, А.А. Хадарцев

МНОГОФАКТОРНЫЙ АНАЛИЗ СМЕРТНОСТИ НАСЕЛЕНИЯ

Методические рекомендации

Тула Издательство ТулГУ 2020 УДК 61:002; 311:614; 519.22 ББК 5с51я73 Х94

Составители: Хромушин В.А., Китанина К.Ю., Хадарцев А.А.

Многофакторный анализ смертности населения: методические рекомендации. Тула: Изд-во ТулГУ, 2020. 20 с.

Методические рекомендации подготовлены на базе кафедры «Поликлиническая медицина» и утверждены на Ученом Совете медицинского института ТулГУ (Протокол № 6 от « 21 » июня 2020 г.).

Рецензент: Доктор медицинских наук, профессор

Ластовецкий А.Г. (Центральный НИИ организации и информатизации здравоохранения).

Методические рекомендации предназначены для научных работников, занимающихся анализом медицинских данных по смертности населения. Изложенный материал по работе со специализированной программой и методика анализа смертности населения могут быть также полезны ординаторам и медицинским статистикам.

Работа выполнена при финансовой поддержке РФФИ и Тульской области в рамках научного проекта №19-413-710011.

> © Коллектив авторов, 2020 © ТулГУ, 2020

введение

Представленный материал является руководством в работе:

- со специализированным программным обеспечением AMPS;

 по подготовке данных о смертности населения для многофакторного анализа;

выполнения многофакторного анализа с построением математической модели.

Исходной информацией являются данные регистра смертности MedSS [1]. Для обеспечения работы программы AMPS с расширенными возможностями целесообразно в нее загрузить данные о смертности по различным годам (рекомендуется за последние 10 лет).

Программа **AMPS** предназначена для многофакторного анализа данных о смертности населения и позволяет формировать базу данных с выбираемыми факторами и целевым значением для анализа, рассчитывать число сочетанных выбранных факторов по каждому значению выбранных факторов и каждому целевому значению, формировать базу для многофакторного анализа внешними программами.

Анализируемыми факторами являются: основная (первоначальная) причина смерти; множественные причины смерти (по четыре причины первого и второго раздела); пол; образование; занятость; категория риска, связанная с радионуклидами; возрастная когорта; территории региона.

Программа позволяет выгружать аналитический массив данных для анализа внешними программами, например, с помощью алгебраической модели конструктивной логики [2, 3].

Результаты многофакторного анализа необходимы:

– для детальной оценки ситуации;

 выявление слабых мест, на которых необходимо сосредоточить усилия учреждений здравоохранения;

– поддержки принятия управленческих решений.

На основе подсчитанных целевых и нецелевых случаев выбранных для анализа сочетанных факторов можно строить математическую модель по представленному методическому примеру.

Учебно-целевыми задачами данного методического материала являются:

- изучение программы AMPS и аспектов ее применения;

 освоение предлагаемой методики многофакторного анализа смертности населения;

– оценка результата расчета.

3

Для выполнения указанных задач необходимы базисные знания:

– по кодированию множественных причин смерти [4];

- по работе с регистром смертности MedSS [4];

– по курсу «Медицинская информатика», включая образовательный проектно-ориентированный модуль «Анализ медицинских данных», а также по основам медицинской статистики.

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Программа многофакторного анализа смертности заселения AMPS (версия 2) позволяет (рис. 1):

- импортировать обезличенные данные в формате программы MedSS [1];

– просматривать и при необходимости корректировать записи;

– формировать аналитическую базу по выбранным пользователем факторам и их значениям;

 – формировать значение цели (1 – достигается, 0 – не достигается) по сочетанным факторам и их значениям;

- подсчитывать количество одинаковых целевых и нецелевых случаев;

 формировать и экспортировать данные для анализа внешними программами.

Рис. 1. Внешний вид программы АМРЅ

Факторами, используемыми для анализа, являются:

– **BB** основная (первоначальная) причина смерти, определенная автоматически встроенным в регистр смертности **MedSS** модулем с базой знаний причинно-следственных связей или вручную (для отдельных случаев);

– **В1-В8** множественные причины смерти (по четыре в первом и втором разделах п.19 медицинского свидетельства о смерти);

- **Р1** пол (1 – мужской, 2 – женский, 3 – интраверт, 4 – не определен);

- **Q2** семейное положение (1 – состоял(а) в зарегистрированном браке, 2 – не состоял(а) в зарегистрированном браке, неизвестно);

– Q3 образование (1 – профессиональное: высшее, 2 – профессиональное: неполное высшее, 3 – профессиональное: среднее, 4 – профессиональное: начальное, 5 – общее: среднее (полное), 6 – общее: основное, 7 – общее: начальное, 8 – общее: не имеет начального образования, 9 – неизвестно);

М1 занятость (1 – в экономике: руководители и специалисты высшего уровня квалификации, 2 – в экономике: прочие специалисты, 3 – в экономике: квалифицированные рабочие, 4 – в экономике: неквалифицированные рабочие, 5 – в экономике: занятые на военной службе, 6 – не в экономике: пенсионеры, 7 – не в экономике: студенты и учащиеся, 8 – не в экономике: работающие в личном подсобном хозяйстве, 9 – не в экономике: безработные, 10 – прочие);

- H2 категория риска, связанная с радионуклидами (0 – не принадлежит, 1
- ликвидатор, 2 – дети ликвидаторов, 3 – не известно, 4 – проживает на контролируемой территории);

– WVzr возрастные когорты (0 – нет данных; 1 – 0...17 лет; 2 – 18...24 года; 3 – 25...44 года; 4 – 45...64 года; 5 – 65...84 года; 6 – свыше 85 лет);

- **Rn** код муниципальных образований (5 знаков).

	АНАЛИЗ МНОЖЕСТВЕННЫХ ПРИЧИН СМЕРТИ					
Имп, Исх	З Опереалия с лаговани х Х Месторасположение папки: [D:\AMPS\amps-2\ Наличие файла: [154973339 байт Импорт Просмотр базы Удаление	е базы ных				
ПОДГОТОВКА 🏾 РАБОТА						
МНОГОФАКТОРНЫЙ АНАЛИЗ МЕДИЦИНСКИХ ДАННЫХ						

Рис. 2. Импорт данных

Импорт данных можно осуществлять путем добавления данных, так и полностью за многие годы. Для этого массив данных (в формате txt) следует разместить в папку, где находится программа. При этом надо иметь в виду, что программа сама определяет папку своего размещения.

Необходимо отметить, что на протяжении длительного периода использования регистра смертности в него вносились изменения, что приводило к изменению отдельных факторов. По этой причине рекомендуется загружать массив за все годы.

В предоставляемой в ТулГУ программе имеется массив за период 2007 ... 2020-1 годы.

90 2 •	An Do	вока Дид Вс 🎯 🛄 🏹	тарка Формат Са 115, 17	30	писи Сер	enc Qr	но Сл У 👌	paska Ad	lobe PDF	i II				Beegine	Janpoo 🔸 .	- 0
-	N	U1	U2	V2	S1	N1	\$2	N2	D1	F1	F2	F3	P1	81	R2	V3
	1	1027103671627	7020200000	1	70202	15686	2		09.01.2018		4		1	24 марта 1954 г.	4 января 2018 г	t,
	2	1027101410830	7023400000	1	70234	49828			06.01.2018	-			1	15 RHBapR 1931 r.	5 января 2018 г	r.
	3	1037100124247	7040100000	1	7040120	84146			09.01.2018				2	4 сентября 1938 r.	2 онваро 2018 г	t.
	4	1027103474067	7024000000	1	70240	5071			09.01.2018		•	•	2	22 сентября 1929 г.	9 января 2018 r	t.
	5	1027101849136	7025000000	1	70250	4922			09.01.2018				2	11 ноября 1928 г.	3 января 2018 г	r
	6	1037100124247	7040100000	1	7040120	83827			09.01.2018			-	2	9 февраля 1929 r.	8 A-Baph 2018 r	t.
	7	1027102671804	7020800000	. 1	70208	14407			09.01.2018	-	-	-	1	15 HIDHR 1942 F.	3 января 2018 r	£.
	8	1027102875282	7022000000	1	70220	6826			09.01.2018				2	3 worm 1941 r.	7 января 2018 г	t.
	9	1027103671627	7020200000	1	70202	15570			09.01.2018			•	2	8 марта 1935 r.	1 R+baps 2018 r	t.
	10	1027101849136	7025000000	1	70250	4925			09.01.2018	-	•		2	3 марта 1927 г.	5 snbaps 2018 r	t
	11	1037100124247	7040100000	1	7040120	85283			10.01.2018				2	30 oktre5pe 1938 r.	8 n-maps 2010 r	t.
	12	1027101508983	7024800000	1	70248	12418			09.01.2018				1	24 октября 1935 г.	8 января 2018 г	1
	13	1037100124247	7040100000	1	7040120	82881			06.01.2018			-	1	20 worm 1931 r.	5 remeaps 2018 r	1
	14	1037100124247	7040100000	1	7040120	83054			10.01.2018			4	1	6 Main 1974 r.	9 января 2018 г	t.
	15	1027101679373	7022800000	1	70228	20218			10.01.2018				1	24 декабря 1976 r.	10 живаря 2018 г	1
	16	1027101589426	7021200000	1	70212	10033			22.01.2018				2	8 ноября 1956 г.	19 Ambapa 2018 r	t.
	17	1027100523823	7040100000	1	70401	47803			02.01.2018				2	4 февраля 1972 r.	2 января 2018 г	i
	18	1027103671627	7020200000	1	70202	15465			03.01.2018	i.	-	-	2	17 августа 1953 г.	3 января 2018 г	1.
	19	1027100686293	7040100000	1	70401	38846			01.01.2018	-	-	-	1	19 сентября 1938 г.	1 января 2018 г	<i>i</i>
	20	1027100523823	7040100000	. 1	70401	47802			01.01.2018				2	16 ливара 1945 r.	1 neesapo 2018 r	1
	21	1027103671627	7020200000	1	70202	14554			01.01.2018			4 .	2	1 wona 1936 r.	1 A+Baph 2018 r	i.
	22	1027101508983	7024800000	1	70248	12611			02.01.2018				2	8 Max 1955 r.	1 января 2018 r	
	23	1027100691188	7040100000	1	70401	53373			02.01.2018		-	-	2	15 Honfon 1942 r.	1 л-варл 2018 r	i.
	24	1027101731040	7023200000	1	70232	5132			02.01.2018			-	2	14 more 1947 r.	2 января 2018 г	1
	25	1027100750852	7040100000	1	70401	55924			02.01.2018				1	8 mars 1930 r.	1 sweaps 2018 r	<u>i</u> =
	26	1027100686293	7040100000	1	70401	38897			02.01.2018				2	1 марта 1950 r.	1 R+Baps 2018 r	£.
	27	1027100691188	7040100000	1	70401	53374			02.01.2018				1	12 жираря 1940 г.	2 seepaps 2018 r	1
	28	1037101130307	7040100000	1	70401	58131			02.01.2018			-	2	21 wona 1965 r.	2 n-maps 2010 r	6
	29	1037100124247	7040100000	1	7040120	85191			02.01.2018				2	14 anpens 1942 r.	1 живаря 2018 г	1
	30	1027100750852	7040100000	1	70401	55925			02.01.2018				2	18 ox185ps 1937 r.	1 mmsaps 2018 r	i.
	31	1027101484618	7024400000	1	70244	0789			02.01.2018				2	22 октября 1948 г.	2 января 2018 г	é.
	32	1037100124247	7040100000	1	7040120	85189			02.01.2018				1	5 sweaps 1957 r.	1 sweaps 2018 r	1
	33	1027100750852	7040100000	1	70401	55704			02.01.2018				2	14 deepans 1929 r.	1 sepapa 2018 r	E.
	34	1027101679373	7022800000	1	70228	20210			02.01.2018				2	11 живаря 1938 г.	1 semaps 2015 r	1
	- 14	1027101508983	7024800000	1	70248	12639			02.01.2018			1	2	20 deepans 1938 r	1 means 2018 r	ā-

Рис. 3. Просмотр загруженных данных регистра смертности

Следующим шагом является формирование из общего массива данных требуемого для анализа массива путем заполнения логических полей в колонке «Фильтр». На рисунке 4 показаны условия выбора:

- только случаи смерти жителей Тульской области (иногородние исключены);

- 2019 год;

– только случаи смерти от болезней органов дыхания.

Одновременно указывается цель (колонка «Цель»), в качестве которой может быть выбран как отдельный фактор, так и сочетанные факторы.

На рисунке 4 показаны условия выбора цели J12 – J18.9:

J12 Вирусная пневмония, не классифицированная в других рубриках.

J13 Пневмония, вызванная Streptococcus pneumoniae.

J14 Пневмония, вызванная Haemophilus influenzae [палочкой Афанасьева-Пфейффера].

J15 Бактериальная пневмония, не классифицированная в других рубриках.

J16 Пневмония, вызванная другими инфекционными возбудителями, не классифицированная в других рубриках.

J17 Пневмония при болезнях, классифицированных в других рубриках.

J18 Пневмония без уточнения возбудителя.

Рис. 4. Форма f_Formir

После нажатия кнопки «Формирование» будет удалена база от предыдущего расчета и записана новая аналитическая база в соответствии с заданными условиями фильтрации из общей базы. Эта операция является длительной по времени. Просмотр сформированной аналитической базы может быть выполнен нажатием кнопки «Просмотр результата».

Далее кнопкой «Анализ» (рис. 1) вызывается форма выбора факторов для анализа (рис. 5). Тем самым мы выбираем из всей совокупности анализируемых факторов только необходимые. После этого нажимается «Итоговый результат», после чего на экране появляется результат в виде запроса (рис. 6), который можно перенести в текстовый редактор путем копирования через область выделения всей таблицы.

ВЫБОР ФАКТОРОВ ДЛЯ АНАЛИЗА	Выбор:				
Основная (первоначальная) причина смерти:					
Причина смерти (первая строка первого раздела):					
Причина смерти (вторая строка первого раздела:					
Причина смерти (третья строка первого раздела:					
Причина смерти (четвертая строка первого раздела:					
Причина смерти (первая строка второго раздела):					
Причина смерти (вторая строка второго раздела):					
Причина смерти (третья строка второго раздела):					
Причина смерти (четвертая строка второго раздела):					
Пол:					
Семейное положение:					
Образование:					
Кем работал:					
Категория риска, связанная с радионуклидами:					
Территория:					
Возрастная когорта:					
Итоговый результат					
SUP					
АНАЛИЗ МЕДИЦИНСКИХ ДАННЫХ					

Рис. 5. Форма **f_Itog**

<u>Ф</u> айл	Правка	Вид	Встав	ка с	Рор <u>м</u> ат	<u>3</u> anı	іси С	ервис	Окно	<u>C</u> npa	вка	Ado <u>b</u> e F	PDF				
🗹 • 🗔 '	2 3	ABC	81%		310	12	A↓ R A	113	10	1 44	100	×	- 12		÷		
W	YR	BBw	B1w	B2w	B3w	B4w	B5w	B6w	B7w	B8w	P1w	Q2w	Q3w	M1w	H2w	Rnw	WVzrw
• 1	1										1						
1	0										1						1
14	0										1						2
31	1										1						
79	0										1						
68	1										1						
218	0										1						
50	1										1						
49	0										1						
12	1										1						
2	1										2						
1	0										2						
5	0										2						
9	1										2						
21	0										2						
15	1										2						5.4
79	0										2						
28	1										2						
71	0										2						
14	1										2						. (

Рис. 6. Итоговый результат

AH	АЛИЗ МНОЖЕСТВЕННЫХ ПРИЧ	ЧИН СМЕРТИ
импорт да Исходная	В Операзия с дажналяя Месторасположение папки: D:\AMPS\amps-2\ Наличие файла: 16184 байт Просмотр Экспор	хі рование базы Анализ т
ПОДГОТО	ВКА 💵	РАБОТА инских данных

Рис. 7. Экспорт данных

Для анализа внешними программами многофакторного анализа можно воспользоваться версией алгебраической модели конструктивной логики, позволяющей строить математическую модель с отбором результирующих составляющих с использованием доверительных интервалов [3]. Перед экспортом данных (рис. 7) можно воспользоваться кнопкой просмотр экспортируемого массива данных (рис. 8).

В использовании программы для многофакторного анализа смертности можно руководствоваться следующими рекомендациями:

1. Для выбора территорий при формировании массива и анализе можно воспользоваться справочником территорий (кнопка «Help» на рис. 4). Выбор группы территорий может потребоваться при оценке влияния экологии на смертность населения.

2. Не рекомендуется использовать много факторов для анализа смертности (рис. 5). Чем больше факторов, тем меньше мощность результирующих составляющих и труднее достичь достоверности результирующих составляющих.

3. Выбирая целевые факторы и их значения необходимо учитывать, что нецелевые записи (строки) соответствуют другим условиям отбора, а не по причине их отсутствия.

4. Для сравнительно небольших массивов (по числу анализируемых факторов) можно построить математическую модель без использования специализированных программ (показано ниже). При выборе многих факторов для анализа придется использовать внешнюю программу [3].

5. Импортируемый массив данных о смертности населения размещайте в папке, где находится программа. Импортируемый массив данных будет размещен программой в папке своего размещения.

9

<u></u>	Анализ м	множесте	енных г	ричин с	мерти -	[zBaseExp	э : запрос	на выбор
1	<u>Ф</u> айл	Правка	<u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	г <u>З</u> аписи	Сервис	Окно (
	- 🖌	12 🖂	🛕 💞	🔏 🗈	20	A A	↓ <u>₹</u> ↓ 🎸	V
	YR	P1	Q2	Q3	M1	H2	Rn	VzrK
	1	1	2	6	9	0	70202	4
	0	1	1	7	6	0	70202	5
	1	1	1	6	6	0	70202	5
	0	1	2	3	6	0	70202	5
	1	1	2	5	9	0	70202	4
	1	2	1	3	6	0	70202	6
	0	2	1	7	6	0	70202	6
	1	1	1	5	6	0	70202	4
	0	1	1	6	6	0	70202	5
	0	1	2	5	9	0	70204	3
	0	1	1	5	6	0	70204	5
	0	2	2	7	6	0	70204	6
	0	2	2	5	6	0	70204	6
	0	1	2	6	6	0	70204	5
	0	1	1	5	6	0	70204	5
	0	1	2	6	6	0	70204	5
	0	1	1	3	6	0	70204	5
	0	1	2	6	6	0	70204	4
	0	1	1	5	6	0	70204	4
	0	1	1	3	6	0	70206	5
	0	1	1	5	6	0	70206	5
	0	2	2	3	6	0	70206	5
	0	2	2	7	6	0	70206	6
	1	1	1	6	10	0	70206	4
	0	2	2	3	6	0	70206	5
	0	1	1	7	6	0	70206	5
	0	1	2	1	6	0	70206	4
	0	1	2	5	6	0	70206	5
	0	2	2	7	6	0	70206	6
	0	1	1	7	6	0	70206	5
	0	2	2	7	6	0	70206	6
	0	2	2	6	6	0	70206	4
	0	2	2	3	6	0	70206	6
	0	1	2	3	6	0	70206	4
	0	1	1	3	6	0	70206	5
3an	ись: 🚺	I ■ 1	1)) I)*	из 768			

Рис. 8. Аналитический массив

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ И ОЦЕНКА РЕЗУЛЬТАТА

Порядок действий:

1. Выполняем расчеты за последние 5 лет с условиями, указанными в предшествующем разделе.

2. Результаты (рис. 6) копируем (табл. 1 – 5).

3. Удаляем пустые столбцы (не выбранные для анализа факторы).

4. Переобозначаем (для удобства) факторы.

5. Выделяем цветом случаи, у которых количество целевых случаев больше чем количество нецелевых случаев.

6. Записываем выделенные целевые случаи в виде результирующих составляющих коньюнктивно объединенных факторов (табл. 6) с указанием мощности W (числа случаев), аналогично тому, как это делается в алгебраической модели конструктивной логики [5].

7. Оценивается достоверность результата по не пересекающимся доверительным интервалам (пример за 2019 год приведен в табл. 6).

8. Достоверные результирующие составляющие размещаем в табл. 7. Если в анализируемом году имеются несколько результирующих составляющих, то их следует считать дизъюнктивно объединенными (обычно знак объединения не показывают из-за необходимости указания мощности **W**).

9. Сравниваем результаты (математические модели) по годам. Если замечаем повторяющиеся из года в год результирующие составляющие, то их мы можем оценивать как закономерность.

Табл. 1

Массив: 201	Массив : 2019 год; проживание – ТО; J00 – J99.8; 768 случаев.							
	Цель:	J12 – J18.9.						
Кол-во (W)	Цель (Ү)	Пол (Р)	Возр. когорта (V)					
1	1	1	1					
1	0	1	2					
14	0	1	3					
31	1	1	3					
79	0	1	4					
68	1	1	4					
218	0	1	5					
50	1	1	5					
49	0	1	6					
12	1	1	6					
2	1	2	1					
1	0	2	2					
5	0	2	3					
9	1	2	3					
21	0	2	4					
15	1	2	4					
79	0	2	5					
28	1	2	5					
71	0	2	6					
14	1	2	6					

Результат расчета за 2019 год

Массив : 2018 год; проживание – ТО;								
J00 – J99.8; 1104 случаев.								
Цель: J12 – J18.9								
Кол-во	Цель	Пол	Возр. когорта					
(W)	(Y)	(P)	(V)					
3	1	1	0					
1	1	1	1					
21	0	1	3					
44	1	1	3					
116	0	1	4					
73	1	1	4					
289	0	1	5					
59	1	1	5					
73	0	1	6					
15	1	1	6					
3	1	2	0					
4	0	2	3					
16	1	2	3					
39	0	2	4					
16	1	2	4					
129	0	2	5					
35	1	2	5					
128	0	2	6					
40	1	2	6					

Результат расчета за 2018 год

Массив: 2017 год; проживание – ТО;								
J00 – J99.8; 1038 случаев.								
Цель : J12 – J18.9								
Кол-во	Цель	Пол	Возр. когорта					
(W)	(Y)	(P)	(V)					
1	1	1	1					
1	0	1	2					
1	1	1	2					
16	0	1	3					
38	1	1	3					
110	0	1	4					
91	1	1	4					
261	0	1	5					
52	1	1	5					
63	0	1	6					
11	1	1	6					
2	0	2	3					
16	1	2	3					
17	0	2	4					
14	1	2	4					
141	0	2	5					
45	1	2	5					
132	0	2	6					
26	1	2	6					

Результат расчета за 2017 год

Результат расчета за	2016	год
----------------------	------	-----

Массив: 2016 год; проживание – ТО;									
J00 – J99.8; 1148 случаев.									
	Цель: J12 – J18.9								
Кол-во	Цель	Пол	Возр. когорта						
(W)	(Y)	(P)	(V)						
1	0	1	0						
1	0	1	1						
1	1	1	1						
1	0	1	2						
18	0	1	3						
55	1	1	3						
129	0	1	4						
116	1	1	4						
276	0	1	5						
72	1	1	5						
59	0	1	6						
10	1	1	6						
1	0	2	0						
2	0	2	1						
1	1	2	1						
1	1	2	2						
5	0	2	3						
12	1	2	3						
26	0	2	4						
26	1	2	4						
165	0	2	5						
43	1	2	5						
100	0	2	6						
27	1	2	6						

Массив: 2015 год; проживание – ТО; J00 – J99.8; 1137 случаев. Цель: J12 – J18 9						
Кол-во (W)	Цель (Ү)	Пол (P)	Возр. когорта (V)			
3	1	1	0			
3	0	1	1			
3	1	1	1			
5	1	1	2			
11	0	1	3			
66	1	1	3			
108	0	1	4			
143	1	1	4			
266	0	1	5			
81	1	1	5			
56	0	1	6			
18	1	1	6			
2	0	2	1			
2	1	2	1			
6	0	2	3			
11	1	2	3			
21	0	2	4			
36	1	2	4			
124	0	2	5			
43	1	2	5			
99	0	2	6			
30	1	2	6			

Результат расчета за 2015 год

Рекомендации по построению математической модели:

1. Для построения доверительных интервалов можно воспользоваться программой AtteStat (при установке встраивается в Excel) или учебной программой TablSt [6].

2. Пример расчета доверительных интервалов показан в табл. 6 (за 2019 год). В этом примере:

• для (P=1) & (V=3):

14 – третья строка табл. 1 (значение **W**);

31 – четвертая строка табл. 1 (значение W);

14+31 - всего;

для уровня доверия p=0,05 доверительные интервалы 0,1720 - 0,4502 и 0,5498 - 0,8280 не пересекаются (поскольку 0,5498 > 0,4502), что указывает на достоверность различий.

• для (P=2) & (V=3):

5 – тринадцатая строка табл. 1 (значение W);

9-четырнадцатая строка табл. 1 (значение W);

5+9 – всего;

для уровня доверия p=0,05 доверительные интервалы 0,0805 - 0,6338 и 0,3662 - 0,9195 пересекаются (поскольку 0,3662 < 0,6338), что указывает на не достоверность различий.

3. Отсутствие нецелевых значений означает достоверность целевых значений (см. четвертую строку в табл. 5 за 2015 год). Однако небольшое число случаев можно считать не характерным и не учитывать.

Табл. 6

Представление результата в качестве математической модели и оценка результата в доверительных интервалах

Год	Математическая модель для Y=1	Оценка достоверности
2019	W=31; (P=1) & (V=3)	Y=0: 14/(14+31)=0,3111
		(p=0,05: 0,1720 - 0,4502)
		Y=1: 31/(14+31)=0,6889
		(p=0,05: 0,5498 - 0,8280)
		Различие достоверно
	W=9; (P=2) & (V=3)	Y=0: 5/(5+9)=0,3111
		(p=0,05: 0,0805 - 0,6338)
		Y=1: 9/(5+9)=0,6889
		(p=0,05: 0,3662 - 0,9195)
		Различие не достоверно
2018	W=44; (P=1) & (V=3)	Достоверно
	W=16; (P=2) & (V=3)	Достоверно
2017	W=38; (P=1) & (V=3)	Достоверно
	W=16; (P=2) & (V=3)	Достоверно

2016	W=55; (P=1) & (V=3)	Достоверно
	W=12; (P=2) & (V=3)	Не достоверно
2015	W=143; (P=1) & (V=4)	Достоверно
	W=66; (P=1) & (V=3)	Достоверно
	W=36; (P=2) & (V=4)	Достоверно
	W=11; (P=2) & (V=3)	Не достоверно

Табл. 7

Итоговые математические модели по годам

Год	Математическая модель для Ү=1
2019	W=31; (P=1) & (V=3)
2018	W=44; (P=1) & (V=3)
2010	W=16; (P=2) & (V=3)
2017	W=38; (P=1) & (V=3)
2017	W=16; (P=2) & (V=3)
2016	W=55; (P=1) & (V=3)
	W=143; (P=1) & (V=4)
2015	W=66; (P=1) & (V=3)
	W=36; (P=2) & (V=4)

Рис. 9. Число случаев смерти мужчин Тульской области в возрасте 25...44 лет с первоначальной причиной смерти **J12 – J18.9**

Оценивая результат, можно видеть:

1. Присутствие по всем годам результирующей составляющей (P=1) & (V=3), что позволяет ее воспринимать как закономерность. Линия тренда показывает снижение мощности этой результирующей составляющей (рис. 9).

2. В 2015 году имели место еще две достоверные достаточно мощные результирующие составляющие: W=143; (P=1) & (V=4) и W=36; (P=2) & (V=4). В последующих годах их нет, что можно воспринимать как положительный итог.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Вайсман Д.Ш., Никитин С.В., Хромушин В.А. Свидетельство о государственной регистрации программы для ЭВМ MedSS №2010612611 // Заявка №2010610801 от 25.02.2010. Зарегистрирована в Реестре программ для ЭВМ 15.04.2010
- Хромушин В.А., Бучель В.Ф., Хадарцев А.А., Китанина К.Ю. Программа алгебраической модели конструктивной логики // Свидетельство о государственной регистрации №2018613348. Заявка №2017662580 от 04.12.2017. Дата регистрации в Реестре программ для ЭВМ 13.03.18г.
- Хромушин В.А., Хадарцев А.А., Китанина К.Ю. Программа многофакторного анализа медицинских данных // Свидетельство о государственной регистрации программы для ЭВМ №2020610392. Заявка №2019664726 от 19.11.2019. Дата регистрации: 14.01.2020. Дата публикации: 14.01.2020.
- Хромушин В.А., Китанина К.Ю., Даильнев В.И. Кодирование множественных причин смерти // Учебное пособие. Тула: Изд-во Тул-ГУ, 2012. 60с
- Хромушин В.А., Китанина К.Ю., Хромушин О.В. Алгебраическая модель конструктивной логики: Монография. Тула: Изд-во ТулГУ, 2017. 245 с.
- 6. Гайдышев И.П. Программное обеспечение анализа данных AtteStat: Руководство пользователя. 2012. 505 с.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ	4
ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ И	
ОЦЕНКА РЕЗУЛЬТАТА	10
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	18

Учебное издание

ХРОМУШИН Виктор Александрович КИТАНИНА Ксения Юрьевна ХАДАРЦЕВ Александр Агубечирович

МНОГОФАКТОРНЫЙ АНАЛИЗ СМЕРТНОСТИ НАСЕЛЕНИЯ

Методические рекомендации

Авторское редактирование

Подписано в печать 28.08.2020. Формат бумаги 60х84 1/16. Бумага офсетная. Усл. печ. л. 1,6 Тираж 100 экз. Заказ 101

Тульский государственный университет 300012, г. Тула, просп. Ленина, 92. Отпечатано в Издательстве ТулГУ 300012, г. Тула, просп. Ленина, 95